

# SYLLABUS FOR MCA

# 1<sup>st</sup> & 2<sup>nd</sup> SEMESTER

# Batch 2024 onwards

| S. | Course  | Course nome                               |             |    |    | - | D  |     | Marks      |       |
|----|---------|-------------------------------------------|-------------|----|----|---|----|-----|------------|-------|
| No | Code    | Course name                               | Course Type | Ca | L  | I | Р  | MSE | Final Exam | Total |
| 1  | MCA-101 | Operating System                          | PCC         | 4  | 4  | 0 | 0  | 40  | 60         | 100   |
| 2  | MCA-102 | Database<br>Management<br>System          | PCC         | 4  | 4  | 0 | 0  | 40  | 60         | 100   |
| 3  | MCA-103 | Computer<br>Architecture & VLSI<br>Design | PCC         | 4  | 4  | 0 | 0  | 40  | 60         | 100   |
| 4  | MCA-104 | Discrete<br>Mathematics                   | PCC         | 4  | 4  | 0 | 0  | 40  | 60         | 100   |
| 5  | MCA-111 | Operating System<br>Lab                   | PCC         | 3  | 0  | 0 | 6  | -   | 75         | 75    |
| 6  | MCA-112 | Database Lab                              | PCC         | 3  | 0  | 0 | 6  | -   | 75         | 75    |
|    |         |                                           | Total       | 22 | 16 | 0 | 12 | 160 | 390        | 550   |

Semester-I

## **BRIDGE COURSE**

Students admitted to MCA Programme who have not studied computer science subjects at UG level and/or have not passed mathematics paper at 10+2 level, are required to enroll, and compulsorily pass the Bridge Course- PSCSATB100 of four credits in addition to the passing regular Semester I course given above during Semester-I, in order to get eligible for admission to Semester – III of MCA 2-years Programme. This course will be of qualifying nature only, needs to be completed and passed in first year of MCA to become eligible for subsequent Semester-III, and will not be included in the total credits earned by the student against MCA final degree. The bridge course exam will be conducted twice a year. Rests of the students are not required to take the Bridge Course. The exam of Bridge Course shall be conducted twice a year. The details of the Bridge Course are given below-

| S.    | Course  | Course name                                              |               | Cd |   | т | Р  | Marks |            |       |  |
|-------|---------|----------------------------------------------------------|---------------|----|---|---|----|-------|------------|-------|--|
| No    | Code    | course name                                              | course rype   | Cu | L |   | r  | MSE   | Final Exam | Total |  |
| 1     | MCA-100 | Programming in C<br>and Fundamental<br>of<br>Mathematics | BRIDGE COURSE | 4  | 4 | 0 | 0  | 40    | 60         | 100   |  |
| Total |         |                                                          | 4             | 4  | 0 | 0 | 40 | 60    | 100        |       |  |

| S. | Course  | Course nome          |             | 24 |    | т | D  |           | Marks      |        |
|----|---------|----------------------|-------------|----|----|---|----|-----------|------------|--------|
| No | Code    | Course name          | Course Type | Ca | L  |   | Р  | MSE       | Final Exam | Total  |
| 1  | MCA-201 | Data Structures      | PCC         | 4  | 4  | 0 | 0  | 40        | 60         | 100    |
|    |         |                      |             |    |    |   |    |           |            | 100    |
| 2  | MCA-202 | Object Oriented      | PCC         | 4  | 4  | 0 | 0  | 40        | 60         |        |
|    |         | Programming in       |             |    |    |   |    |           |            | 100    |
|    |         | Java                 |             |    |    |   |    |           |            |        |
| 3  | MCA-203 | Computer Networks    | PCC         | 4  | 4  | 0 | 0  | 40        | 60         |        |
|    |         |                      |             |    |    |   |    |           |            | 100    |
| Δ  | MCA-224 | Design & Analysis of | PCC         | Λ  | 1  | 0 | 0  | 40        | 60         |        |
| -  |         | Algorithms           | 1.66        | -  | -  | Ŭ | Ŭ  | 40        | 00         | 100    |
| 5  | MCA-225 | Artificial           | PCC         | 4  | 4  | 0 | 0  | 40        | 60         | 100    |
|    |         | Intelligence         |             |    |    |   |    |           |            |        |
| 6  | MCA-211 | Data Structure Lab   | PCC         | 3  | 0  | 0 | 3  | -         | 75         | 75     |
| 7  | MCA-212 | Java Programming     | PCC         | 3  | 0  | 0 | 6  | -         | 75         | 75     |
|    |         | Lab                  | PCC         |    |    |   |    |           |            |        |
| 8  | NCC-201 | Placement            |             | 0  | 0  | 0 | 2  | Satisfact | ory / Not  | S/NS** |
|    |         | Overview and         | NCC         |    |    |   |    | Satisfa   | actory     |        |
|    |         | Career Planning      |             |    |    |   |    |           |            |        |
|    |         |                      |             |    |    |   |    |           |            |        |
|    |         |                      | Total       | 26 | 20 | 0 | 10 | 200       | 450        | 650    |
|    |         |                      |             |    |    |   |    |           |            |        |

## Semester-II

#### Semester 1

| Course  | Course Norma      | Course |    |   | - |   | Marks    |                  |     |
|---------|-------------------|--------|----|---|---|---|----------|------------------|-----|
| Code    | Course Name       | Туре   | Ca | L | • | Р | Internal | Final Exam Total |     |
| MCA-101 | Operating Systems | PCC    | 4  | 4 | 0 | 0 | 40       | 60               | 100 |

## **Course Outcomes**

| At the | t the end of the course the student will be able to                                                          |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1    | Demonstrate understanding of the concepts, structure, and design of operating systems.                       |  |  |  |  |  |  |
| CO2    | Articulate the general architecture of modern computer operating systems including its impact on application |  |  |  |  |  |  |
|        | design and performance.                                                                                      |  |  |  |  |  |  |
| CO3    | Develop understanding of inter process communication and synchronization mechanisms                          |  |  |  |  |  |  |
| CO4    | Analyze the interplay and conflicts in resource usage in a multi-user, multi-tasking environment with an     |  |  |  |  |  |  |
|        | understanding of the trade-offs involved.                                                                    |  |  |  |  |  |  |
| CO5    | Implement the basic concepts of Unix & Linux and programs using shell programming.                           |  |  |  |  |  |  |

## Detailed Syllabus Section-A

**UNIT-I** :Introduction to Operating Systems: Evolution of operating systems, Operating systems concepts, Types of operating systems, Different views of the operating system, Operating system services, System calls, Types of system calls, Operating system Structure, Layered Approach, Micro kernels, Virtual machines.

## (10 Hrs)

**UNIT-2**: Process Management: Process concept, Operation on processes, Inter-process communication, Mutual exclusion, Introduction to Process scheduling, Scheduling algorithms, Process Synchronization, Inter process Synchronization, Critical section problem, Semaphores, Monitors, Message passing, Deadlocks, System Model, Deadlock characterization, Deadlock prevention, Deadlock avoidance.

## (10 Hrs)

(10 Hrs)

**UNIT–3**: Memory Management: Memory management, Swapping, Contiguous memory allocation, Relocation & protection, Memory management, Paging, Segmentation, Intel Pentium Segmentation, Intel Pentium Paging, Virtual memory, Demand paging, Performance of demand paging, Page replacement algorithms: FIFO, Optimal, LRU, Counting based page replacement.

## Section-B

**UNIT-4:** File & I/O Management: File & I/O Management Files system structure, File system implementation, Directory Implementation. Allocation Methods, contiguous allocation, linked allocation, Indexed allocation Disk organization, Disk space management, Disk scheduling, Disk Management, RAID Structure.

## (10 Hrs)

**UNIT –5**: Introduction to LINUX/UNIX: Files and Directories: pathname; Directory Tree; current working directory; Relative pathname; Referring to home directories; Device files; File permissions; Pipes; Trees; mount, init, Files, Directories, Processes, Commands: pwd, mkdir, rmdir, Is, cat, more, mv, cp, rm, diff, wc, pwd, wc, who write, who am i, passwd, ps, kill, date, cal,man, gzip, df, chmod, mkdir, cd. Filters: pr, head, tail, cut, paste, sort, uniq, nl, tr. Regular Expression: grep; egrep; fgrep, Vi-Editor, adding and replacing text, commands in Command mode, Deletion, Navigation, pattern search, repeating commands, Shell Programming, Logical Operators, If else Statement, Case structure, Looping.

(10 Hrs)

|        | Textbooks                                             |                                                      |                   |                        |  |  |  |  |  |
|--------|-------------------------------------------------------|------------------------------------------------------|-------------------|------------------------|--|--|--|--|--|
| S. No. | Name of the Books                                     | Author                                               | Publisher         | Edition (Pub. Yr.)     |  |  |  |  |  |
| 1      | Operating System Concepts                             | Abraham Silberschatz, Peter B.<br>Galvin, Gerg Gagne | Wiley             | 9th (2015)             |  |  |  |  |  |
| 2      | Operating System Design and<br>Implementation         | Andrew S.<br>Tanenbaum                               | Pearson Education | 3rd (2006)             |  |  |  |  |  |
| 3.     | UNIX Concepts and Application                         | Sumitabha Das                                        | Tata McGraw Hill, | 4 <sup>th</sup> (2017) |  |  |  |  |  |
|        |                                                       | Reference Books                                      |                   |                        |  |  |  |  |  |
| S. No. | Name of the Books                                     | Author                                               | Publisher         | Edition (Pub. Yr.)     |  |  |  |  |  |
| 2      | Operating Systems: Internals<br>and Design Principles | William Stallings                                    | Pearson Education | 9th (2018)             |  |  |  |  |  |

| Course  | Course Norse               | Course | 64 |   |   | Р | Marks    |                  |     |  |
|---------|----------------------------|--------|----|---|---|---|----------|------------------|-----|--|
| Code    | Course Name                | Туре   | Ca | L |   | ۲ | Internal | Final Exam Total |     |  |
| MCA-102 | Database Management System | PCC    | 4  | 4 | 0 | 0 | 40       | 60               | 100 |  |

| At the | At the end of the course the student will be able to                                                  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CO1    | Identify the basic concepts, architecture and various data models used in Database Management Systems |  |  |  |  |  |  |  |
| CO2    | Design ER-models to represent simple database application                                             |  |  |  |  |  |  |  |
| CO3    | Understand normalization theory and apply such knowledge to the normalization of a database.          |  |  |  |  |  |  |  |
| CO4    | Articulate the basic issues of transaction processing and concurrency control.                        |  |  |  |  |  |  |  |
| CO5    | Implement advanced database queries using Structured Query Language (SQL).                            |  |  |  |  |  |  |  |

## Detailed Syllabus Section-A

**UNIT–I:** Database Concepts: Traditional file-based system, Conventional file organizations, Need of Database Management System, Components of DBMS, Introduction to hierarchical and network data models. Schemas and Instances, Data independence, three level Architecture of Database, Centralized and client server architecture for DBMS

# **UNIT-2:** Relational Data Model: Entity relationship model, Relational Database Design using ER to Relational Mapping, EER Model, Joins, Relational Algebra and Relational Calculus Concepts, Queries using Relational Algebra and Calculus.

## (10 Hrs)

(10 Hrs)

**UNIT–3**: Normalization: Concept of keys, Functional dependencies, Inference rules, Covers, Closure, Equivalence of functional dependencies, Multivalued dependencies, Theory of normalization, Normal forms (1st to 5th), BCNF, Join dependency, Domain key normal form.

## Section-B

**UNIT-4**: Concurrency Control: Transaction processing, Deadlocks, Concurrency control, Locking techniques, Timestamp ordering, Recovery techniques, Distributed Database Concepts.

## (08 Hrs)

(12 Hrs)

(10 Hrs)

**UNIT-5**: SQL: SQL query processing, Table creation and management, inbuilt functions, Data integrity constraints, Views, Joins, Operators, Privileges, roles and security policies.

|                 | Textbooks                |                    |                          |                    |  |  |  |  |
|-----------------|--------------------------|--------------------|--------------------------|--------------------|--|--|--|--|
| S. No.          | Name of the Books        | Author             | Publisher                | Edition (Pub. Yr.) |  |  |  |  |
| 1               | Database System Concepts | Korth, Silberchatz | Mcgraw Hill<br>Education | 6th (2013)         |  |  |  |  |
| Reference Books |                          |                    |                          |                    |  |  |  |  |

| S. No. | Name of the Books        | Author           | Publisher         | Edition (Pub. Yr.)     |
|--------|--------------------------|------------------|-------------------|------------------------|
| 1      | Fundamentals of Database | ElmasriRame,     | Pearson Education | 7th (2015)             |
|        | System                   | Navathe Shamkant |                   |                        |
| 2.     | The power of Oracle 9i   | R. A. Parida     | Firewall Media    | 1 <sup>st</sup> (2010) |
|        |                          |                  | Publications      |                        |

| Course  | Course Name                            | Course |    |   | тр |   | Marks    |            |       |  |
|---------|----------------------------------------|--------|----|---|----|---|----------|------------|-------|--|
| Code    | Course Name                            | Туре   | Ca | L |    | Р | Internal | Final Exam | Total |  |
| MCA-103 | Computer Architecture & VLSI<br>Design | PCC    | 4  | 4 | 0  | 0 | 40       | 60         | 100   |  |

| At the | At the end of the course the student will be able to                                            |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1    | Understand components of digital electronics, logical organization and the computer arithmetic. |  |  |  |  |  |  |
| CO2    | Minimize the expressions using Karnaugh map method and implement them using Logic Gates.        |  |  |  |  |  |  |
| CO3    | Design and analyze various combinational and sequential circuits                                |  |  |  |  |  |  |
| CO4    | Understand the organization and structure of computer memory.                                   |  |  |  |  |  |  |
| CO5    | Understand the basic parts of a VHDL model                                                      |  |  |  |  |  |  |

## Detailed Syllabus Section-A

**UNIT-I**: Digital Systems and Number Representation: Von Neumann architecture, digital and analog systems. Number system, their types & conversions; Decimal, Binary, Octal, Hexadecimal; Binary Arithmetic: Binary arithmetic operations, Representation of negative numbers; 1's complement and 2's complement, Code Representation: BCD code & Excess-3 and their rules of arithmetic operations.

**UNIT-2**: Logic Gates and Boolean algebra: AND, OR, NOT, NAND, XOR, NOR, XNOR gates, Boolean laws and their Expressions. Representation in SOP, POS form and their simplifications, K–map, code converters, Error detection & correction: Hamming code.

(10 Hrs) UNIT-3: Combinational and sequential Circuits : Half & Full adders & subtractors, parallel adders, Encoder, decoder, Multiplexer De-Multiplexer, Flip-flops and their types, level clocking and edge triggered clocking, Registers and their types, bi-directional register.

## Section-B

**UNIT-4:** Memories and bus structure: Basic memory cell, Memory hierarchy, characteristics, memory types and accessing techniques, static and dynamic Memory, cache memory. Memory address map to CPU, bus structure, memory-mapped and I/O mapped technique, Modes of I/O transfers, instruction & interrupt life cycle.

## (10 Hrs)

(10 Hrs)

**UNIT –5**: VHDL components and tools: Introduction to VHDL, need and importance of VHDL, characteristics, basic components of VHDL -entities, architectures, configuration, package, library, simple VHDL program. Understanding tools and environments– GHDL VHDL simulator, Xilinx ISE (FPGA synthesis tool set), IMAGE simulation accelerator (FPGA based co-simulation environment).

.. .

| S. No.          | Name of the Books                | Author         | Publisher   | Edition (Pub. Yr.) |  |  |  |  |  |
|-----------------|----------------------------------|----------------|-------------|--------------------|--|--|--|--|--|
| 1               | Fundamentals of Digital Circuits | Anand Kumar    | PHI         | 4th (2016)         |  |  |  |  |  |
| 2               | Digital Electronics              | A. K. Maini    | Wiley India | 1st (2007)         |  |  |  |  |  |
| 3               | Digital Electronics              | Kharate        | Oxford      | 1st (2012)         |  |  |  |  |  |
| Reference Books |                                  |                |             |                    |  |  |  |  |  |
| S. No.          | Name of the Books                | Author         | Publisher   | Edition (Pub. Yr.) |  |  |  |  |  |
| 1               | Digital Design                   | M. Morris Mano | Pearson     | 5th (2012)         |  |  |  |  |  |
| 2               | Computer System Architecture     | M M Mano       | Pearson     | 3rd (2012)         |  |  |  |  |  |

## (10 Hrs)

(10 Hrs)

| Course  | Course Name          | Course |    |   |   |   | Marks    |            |       |
|---------|----------------------|--------|----|---|---|---|----------|------------|-------|
| Code    |                      | Туре   | Ca |   |   | Р | Internal | Final Exam | Total |
| MCA-104 | Discrete Mathematics | PCC    | 4  | 4 | 0 | 0 | 40       | 60         | 100   |

| At the | It the end of the course the student will be able to                             |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Explain problems using recurrence relations.                                     |  |  |  |  |  |
| CO2    | Analyze the role of Relations and Functions in computer science                  |  |  |  |  |  |
| CO3    | Model problems in Computer Science using graphs and trees.                       |  |  |  |  |  |
| CO4    | Describe basic terminology of mathematical logic to solve a variety of problems. |  |  |  |  |  |
| CO5    | Model problems in Computer Science using, trees and Graph coloring               |  |  |  |  |  |

## Detailed Syllabus Section-A

**Unit I Overview of Counting**: Basic principles of counting, pigeon-hole principle, generating functions, recurrence Relations, linear recurrence relations with constant coefficients, modelling various problems as recurrence relations ,Homogenous recurrence relations and their solutions, particular solutions and total solution. Problems of Fibonacci Numbers and tower of Hanoi and their solution using recurrence relation.

## (10 Hrs.)

**Unit II: Relations and Functions:** Domain, range and inverse of Relation, Composition of relations, Types of elations, Closure of relations etc. Relation Vs Function, Types of functions, Sum and product of functions, functions used in Computer Science (Floor and Ceil function, Remainder, characteristic and hash function).

## (10 Hrs.)

(10 Hrs.)

**Unit III: Theory of Graphs:** Basic terminology of graphs, multigraphs, directed and weighted graphs, paths and circuits, Types of graphs, Computer representation of graphs, Operations on Graphs, spanning trees using BFS, DFS and their applications, shortest path in weighted graphs and planar graphs, Detection of planarity. Eulerian paths and circuits, Hamiltonian paths and circuits.

## Section B

**Unit-IV: Trees and Graph Coloring:** Tree and its properties, Center of a tree and rooted trees, tree traversals, minimal spanning trees, cut sets, etc. Coloring of graphs, dual graph; Vertex coloring, Chromatic number; Chromatic polynomial, The four color problem, edge coloring, Coloring algorithms. Applications of trees and graph coloring

## (10Hrs.)

**Unit-V: Mathematical Logic:** Propositions, connectives, conditionals and biconditionals, well-formed formulas, tautologies, equivalence of formulas, duality law, normal forms, inference theory for propositional calculus; predicate ,calculus: predicates, free and bound variables, inference theory of predicate calculus. Introduction to algebraic structures, groups

(10Hrs)

Publishers

| Textbooks       |                                                                            |                                     |                          |                    |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------|-------------------------------------|--------------------------|--------------------|--|--|--|--|--|
| S. No.          | Name of the Books                                                          | Author                              | Publisher                | Edition (Pub. Yr.) |  |  |  |  |  |
| 1               | Discrete Mathematics                                                       | Kenneth Rosen                       | McGraw Hill<br>Education | 7th (2017)         |  |  |  |  |  |
| 2               | Graph Theory with applications<br>to Engineering and Computer<br>Science   | Narsingh Deo                        | Prentice Hall            | 1st (2016)         |  |  |  |  |  |
| 3               | Discrete Mathematics structure<br>with applications to Computer<br>Science | Jean-Paul Tremblay and R<br>Manohar | McGraw Hill<br>Education | 1st (2017)         |  |  |  |  |  |
| Reference Books |                                                                            |                                     |                          |                    |  |  |  |  |  |
| S. No.          | Name of the Books                                                          | Author                              | Publisher                | Edition (Pub. Yr.) |  |  |  |  |  |
| 1               | Concrete Mathematics                                                       | Ronald Graham, Donald Knuth,        | Pearson Education        | 2nd (2008)         |  |  |  |  |  |

and Oren Patashnik

| Course  | Course Name          | Course<br>Type |    | Cd L | . т | Р | Marks    |            |       |
|---------|----------------------|----------------|----|------|-----|---|----------|------------|-------|
| Code    |                      |                | Cd |      |     |   | Internal | Final Exam | Total |
| MCA-111 | Operating System Lab | PCC            | 3  | 0    | 0   | 6 | -        | 75         | 75    |

| At the | At the end of the course the student will be able to |  |  |  |  |  |
|--------|------------------------------------------------------|--|--|--|--|--|
| CO1    | Utilize Unix/Linux commands.                         |  |  |  |  |  |
| CO2    | Implement the file permissions                       |  |  |  |  |  |
| CO3    | Effectively sort and manipulate text data            |  |  |  |  |  |
| CO4    | Develop programs by making use of shell programming. |  |  |  |  |  |
| CO5    | Create the user define functions                     |  |  |  |  |  |

## List of Activities for Unix Lab

| S. No. | Activities                                                         |
|--------|--------------------------------------------------------------------|
| 1      | Using cd, pwd, ls to navigate through the file system.             |
| 2      | Creating, renaming, deleting directories using mkdir, mv, rmdir.   |
| 3      | Creating, viewing, and editing files using touch, cat, vi or nano. |
| 4      | Copying, moving, and deleting files using cp, mv, rm.              |
| 5      | Understanding file permissions (read, write, execute) using Is -I. |
| 6      | Changing file permissions using chmod.                             |
| 7      | Using wildcards (*, ?, []) for file matching.                      |
| 8      | Using >, <,   for redirecting input/output and piping commands.    |
| 9      | Using grep, sed, awk for text processing.                          |
| 10     | Sorting data using sort, uniq.                                     |
| 11     | Comparing files using diff, cmp.                                   |
| 12     | Using regular expressions with grep, sed, awk                      |
| 13     | Creating and executing shell scripts.                              |
| 14     | Using variables, control flow statements (if, else, for, while)    |
| 15     | Defining and using functions in shell scripts.                     |

| Course  | Course Name  | Course Type | Cd | L | т | Ρ | Marks    |            |       |
|---------|--------------|-------------|----|---|---|---|----------|------------|-------|
| Code    |              |             |    |   |   |   | Internal | Final Exam | Total |
| MCA-112 | Database Lab | PCC         | 3  | 0 | 0 | 6 | _        | 75         | 75    |

| At the | t the end of the course the student will be able to                        |  |  |  |  |  |
|--------|----------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Create, modify, database structures and data.                              |  |  |  |  |  |
| CO2    | Create tables with constraints to enforce data rules and relationships.    |  |  |  |  |  |
| CO3    | O3 Group data and apply clauses to filter aggregated results.              |  |  |  |  |  |
| CO4    | Create SQL views to simplify data management and enhance query efficiency. |  |  |  |  |  |
| CO5    | Efficiently query and combine data from multiple tables.                   |  |  |  |  |  |

## Lab Activities for Database Lab

| S. No. | Activities                                                                                |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1      | To execute the DDL commands                                                               |  |  |  |  |  |  |
|        | • CREATE                                                                                  |  |  |  |  |  |  |
|        | • ALTER                                                                                   |  |  |  |  |  |  |
|        | • DROP                                                                                    |  |  |  |  |  |  |
|        | RENAME                                                                                    |  |  |  |  |  |  |
|        | • TRUNCATE                                                                                |  |  |  |  |  |  |
| 2      | To execute DML commands                                                                   |  |  |  |  |  |  |
|        | • INSERT                                                                                  |  |  |  |  |  |  |
|        | • UPDATE                                                                                  |  |  |  |  |  |  |
|        | • DELETE                                                                                  |  |  |  |  |  |  |
|        | • SELECT                                                                                  |  |  |  |  |  |  |
| 3      | Creating tables with constraints:                                                         |  |  |  |  |  |  |
|        | NOT NULL                                                                                  |  |  |  |  |  |  |
|        | UNIQUE                                                                                    |  |  |  |  |  |  |
|        | PRIMARY KEY                                                                               |  |  |  |  |  |  |
|        | FOREIGN KEY                                                                               |  |  |  |  |  |  |
| 4      | Implementation of Number function-abs(),min(),max(),ceiling(),floor(),round(),mod(),pow() |  |  |  |  |  |  |
| 5      | Implementation of Aggregate Function-count(),sum(),avg(),min(),max()                      |  |  |  |  |  |  |
| 6      | Implementation of Conversion Function-cast(),convert(),TO_CHAR(),TO_DATE(),TO_NUMBER()    |  |  |  |  |  |  |
| 7      | Implementation of Character Function-length(),INITCAP(),LOWER(),UPPER(),TRIM(),CONCAT()   |  |  |  |  |  |  |
| 8      | Implementation of Date Function                                                           |  |  |  |  |  |  |
| 9      | Implementation of Group By & having clause                                                |  |  |  |  |  |  |
| 10     | Implementation of Order by clause                                                         |  |  |  |  |  |  |

| 11 | Implementation of Views                        |  |  |  |  |  |  |
|----|------------------------------------------------|--|--|--|--|--|--|
|    | Create Views                                   |  |  |  |  |  |  |
|    | Insert data in views                           |  |  |  |  |  |  |
|    | Selecting a data from views                    |  |  |  |  |  |  |
|    | Filtering Data from a View                     |  |  |  |  |  |  |
|    | Updating Data of Views                         |  |  |  |  |  |  |
| 12 | Implementation of different types of Joins     |  |  |  |  |  |  |
|    | Inner Join                                     |  |  |  |  |  |  |
|    | Outer Join                                     |  |  |  |  |  |  |
|    | Natural Join etc                               |  |  |  |  |  |  |
| 13 | Implementation of Arithmetic operators         |  |  |  |  |  |  |
| 14 | Implementation of Comparison operators         |  |  |  |  |  |  |
| 15 | Implementation of logical operators            |  |  |  |  |  |  |
| 16 | Creating Users, Roles, and Granting Privileges |  |  |  |  |  |  |
|    | Create a database named student                |  |  |  |  |  |  |
|    | Create two users: student and teacher          |  |  |  |  |  |  |
|    | Create two roles: data reader and data writer  |  |  |  |  |  |  |
|    | Grant appropriate privileges to roles.         |  |  |  |  |  |  |
|    | Assign roles to users.                         |  |  |  |  |  |  |

| BRIDGE COURSE  |                                        |                  |    |   |   |   |          |            |       |  |
|----------------|----------------------------------------|------------------|----|---|---|---|----------|------------|-------|--|
| Course<br>Code | Course Name                            | Course           |    | L | т | Р | Marks    |            |       |  |
|                |                                        | Туре             | Ca |   |   |   | Internal | Final Exam | Total |  |
| MCA-100        | Programming in C and<br>Fundamental of | BRIDGE<br>COURSE | 4  | 4 | 0 | 0 | 40       | 60         | 100   |  |
|                | Mathematics                            |                  |    |   |   |   |          |            |       |  |

| At the | t the end of the course the student will be able to                                                         |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| CO1    | CO1 Develop basic understanding of the Computer System & programming skills.                                |  |  |  |  |
| CO2    | Understand the mathematical concepts and terminologies that are essential to the study of Computer Science. |  |  |  |  |
| CO3    | Write and execute programs, and hence use computers effectively for problem solving.                        |  |  |  |  |
| CO4    | Choose the right programming constructs & data representation formats based on the requirements.            |  |  |  |  |
| CO5    | Understand and approach the Computer Science subjects in a better way.                                      |  |  |  |  |

## Detailed Syllabus Section-A

**UNIT-I**:Computer Fundamentals & C Basics: Introduction to Computer System, Architecture, Memory Organization, CPU Organization, Software concepts, steps for problem solving, Computer as a tool for problem solving. Program Design tools: Algorithm, Pseudo code and Flowchart Designing, History of C, Characteristics of C, Executing C– program, C Program Structure, Data Types, Variables and Constants, Input Output statements, Type-Casting, Operators and Expressions.

**UNIT-2**: Control Statements, Functions & Arrays: Selection statements, Repetitive statements, Errors, Functions, Recursion, Storage classes, Arrays, Strings,

## (10Hrs)

(10Hrs)

(10Hrs)

**UNIT-3:** Preprocessor, User Defined Data types & Files: Standard C Preprocessor Directives, Pointers, Dynamic Memory Allocation, Structures, Unions, Concepts of File Management, Working with text and Binary Files.

## Section-B

**UNIT-4**: Set Theory & Calculus: Sets, Relations and Functions, Limits and Continuity; Differentiation and Integration; Differential Equations of first Order and first degree.

## (10Hrs)

(10Hrs)

**UNIT-5:** Matrices, Probability & Vector Algebra :Matrices & Determinants, Solution of linear equations, Basic concepts of Probability, Permutation & Combination and Progressions, Vector Algebra concepts, vector addition & products.

|              | Textbooks                 |                            |                     |                         |  |  |  |  |
|--------------|---------------------------|----------------------------|---------------------|-------------------------|--|--|--|--|
| S. No.       | Name of the Books         | Author                     | Publisher           | Edition (Pub. Yr.)      |  |  |  |  |
| 1            | Fundamentals of Computers | V. Rajaraman and N Adabala | Prentice Hall India | 6 <sup>th</sup> (2014)  |  |  |  |  |
| 2            | Let us C                  | Yashwant Kanetkar          | BPB Publications    | 17 <sup>th</sup> (2020) |  |  |  |  |
| 3            | Vector Algebra            | R. Gupta                   | Laxmi Publications  | 4 <sup>th</sup> (2005)  |  |  |  |  |
|              | Reference Books           |                            |                     |                         |  |  |  |  |
| <b>a b i</b> |                           |                            |                     |                         |  |  |  |  |

| S. No. | Name of the Books       | Author          | Publisher         | Edition (Pub. Yr.)     |
|--------|-------------------------|-----------------|-------------------|------------------------|
| 1      | Programming with ANSI-C | E. Balagurusamy | Tata McGraw Hill, | 6 <sup>th</sup> (2012) |

Name of the Books

Design in C

1

2

Data Structure using C

Data Structures and Program

| Semester 2 | 2 |
|------------|---|
|------------|---|

| Course  | Course North    | Course |    |   | - |   |          | Marks      |       |
|---------|-----------------|--------|----|---|---|---|----------|------------|-------|
| Code    | Course Name     | Туре   | Cđ | L | 1 | ۲ | Internal | Final Exam | Total |
| MCA-201 | Data Structures | PCC    | 4  | 4 | 0 | 0 | 40       | 60         | 100   |

## **Course Outcomes**

| At the | t the end of the course the student will be able to                                          |  |  |  |
|--------|----------------------------------------------------------------------------------------------|--|--|--|
| CO1    | Understand the basics of data types and data structures.                                     |  |  |  |
| CO2    | Compare different data structures in context of their properties.                            |  |  |  |
| CO3    | Identify the use of appropriate data structures to solve a given problem.                    |  |  |  |
| CO4    | Apply different data structures to solve different sorting and searching problems.           |  |  |  |
| CO5    | Appreciate applicability of advanced data structures to model and solve real world problems. |  |  |  |

## **Detailed Syllabus** Section-A

**UNIT-I:** Fundamental Notations: Primitive and composite data types, self-referential structures, Algorithms, Types of data structures, Operations, Time and space complexity of algorithms, Asymptotic notation.

UNIT-2 : Linear Data Structures: Arrays, Linked lists, Stacks, Queues, operations and their complexities, Implementations, Applications.

UNIT-3:Non-Linear Data Structures: Trees, Binary Trees, traversing binary trees, threaded binary trees, Binary search trees, heaps, Graphs, Traversing graphs.

## Section-B

UNIT-4: Indexing Structures : ISAM, m-way trees, B-trees, B+-trees, Hashing techniques for direct access, Collision in hashing, Collision resolution.

## (08 Hrs)

UNIT-5: Sorting & Searching: Internal and External sorts, Bubble sort, Insertion sort, Selection sort, Shell sort, Quick sort, Radix sort, Merge sort, Types of merging. Searching-linear and binary search methods, Comparison of sorting and searching methods.

Textbooks

Langsam, Yedidyah, Moshe J.

Augenstein, and Aaron M.

Author

Leung

Tenenbaum

| (12Hrs) |
|---------|
|---------|

Edition (Pub. Yr.)

1st (2019)

2nd (2006)

#### Robert L. Kruse and Bruce P. Pearson Education

Publisher

Pearson

Education

## **Reference Books**

| S. No. | Name of the Books      | Author             | Publisher       | Edition (Pub. Yr.) |
|--------|------------------------|--------------------|-----------------|--------------------|
| 1      | Data Structures with C | Seymour Lipschutz, | Schaum Outlines | 2011               |

## (10Hrs)

(10Hrs)

(10Hrs)

| Course  | Course Name Course of L                |      |    |   | тр |   | Marks    |            |       |
|---------|----------------------------------------|------|----|---|----|---|----------|------------|-------|
| Code    | Course Name                            | Туре | Ca | L | I  | ۲ | Internal | Final Exam | Total |
| MCA-202 | Object Oriented Programming<br>in Java | РСС  | 4  | 4 | 0  | 0 | 40       | 60         | 100   |

| At the | At the end of the course the student will be able to                                                   |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Appreciate the foundational data structures in Java                                                    |  |  |  |  |  |
| CO2    | Apply object-oriented decomposition to model real-world scenarios and applications through objects and |  |  |  |  |  |
|        | Classes.                                                                                               |  |  |  |  |  |
| CO3    | Appreciate advanced features in Java and their applications.                                           |  |  |  |  |  |
| CO4    | Assimilate and implement Event and GUI based Programming model in Java.                                |  |  |  |  |  |
| CO5    | Design dynamic web application using database connectivity.                                            |  |  |  |  |  |
|        |                                                                                                        |  |  |  |  |  |

#### Detailed Syllabus Section-A

**UNIT–I:** Java Language Basics: Features, Object Oriented concepts, Java Virtual Machine Concepts, Primitive Data Type and Variables, Java Keywords, Java Operators, Expressions, Control Statements and Arrays. Class and Objects, Static methods, Constructors, Method Overloading

(10Hrs) UNIT-2: Inheritance, Packages and Interfaces: Inheritance, Access Control, Method Overriding, Garbage Collection, Abstract Classes, Polymorphism, Packages, Interfaces, Exceptions Handling, Types of Exceptions, Writing Exception Subclasses, Multithreading, Synchronization in Java.

**UNIT–3:** I/O, Files and Applets Programming: I/O in Java, Byte Stream Classes, Character Stream Classes, Reading and Writing to Console, Reading and Writing Files, The Transient and Volatile Modifiers, String and String Buffer Class, Applet Class, An Applet Skeleton, adding images & sound, Passing parameters to an applet.

## (10Hrs)

(10Hrs)

## Section-B

**UNIT-4**: Events and AWT : AWT Components, Building User Interface with AWT, Handling Events of Mouse and Keyboards, Event Delegation Model (Events, Listeners, interfaces), Layouts and Layout Manager

## (10Hrs)

(10Hrs)

**UNIT–5:** Regular Expression and JDBC: Regular Expressions; JDBC implementation, Connection class, Statements, Types of statement objects, (Statement, Prepared Statement and Callable Statement), Types of result set, Result Set Metadata, Catching Database Results, Handling database Queries, JDBC and AWT.

|        | Textbooks                      |                 |                       |                    |  |  |  |
|--------|--------------------------------|-----------------|-----------------------|--------------------|--|--|--|
| S. No. | Name of the Books              | Author          | Publisher             | Edition (Pub. Yr.) |  |  |  |
| 1      | JAVA: THE COMPLETE             | Herbert Schildt | McGraw Hill Education | 12th (2022)        |  |  |  |
|        | REFERENCE                      |                 |                       |                    |  |  |  |
| 2      | Object Oriented Programming in | Rick Halterman  | Southern Adventist    | 1st (2008)         |  |  |  |
|        | Java                           |                 | University            |                    |  |  |  |
|        | Reference Books                |                 |                       |                    |  |  |  |

| S. No. | Name of the Books             | Author                  | Publisher       | Edition (Pub. Yr.) |
|--------|-------------------------------|-------------------------|-----------------|--------------------|
| 1      | Java 8 Programming Black Book | D.T. Editorial Services | Dreamtech Press | 6th (2015)         |

| Course<br>Code |                                                                    | Course Norma                       | Course     |        |       | -    |        | Marks           |                |       |  |
|----------------|--------------------------------------------------------------------|------------------------------------|------------|--------|-------|------|--------|-----------------|----------------|-------|--|
| 0              | ae                                                                 | Course Name                        | Туре       | Ca     | L     | 1    | Р      | Internal        | Final Exam     | Total |  |
| MCA-           | 203                                                                | Computer Networks                  | PCC        | 4      | 4     | 0    | 0      | 40              | 60             | 100   |  |
| Cours          | Course Outcomes                                                    |                                    |            |        |       |      |        |                 |                |       |  |
| At the         | end of t                                                           | he course the student will be able | e to       |        |       |      |        |                 |                |       |  |
| CO1            | Underst                                                            | and the basic taxonomy and tern    | ninology ( | of the | com   | pute | er net | working model a | nd architectur | e.    |  |
| CO2            | Articula                                                           | te the fundamentals concepts of    | data com   | muni   | catio | n an | d pro  | tocols.         |                |       |  |
| CO3            | Understand the network design and performance issues.              |                                    |            |        |       |      |        |                 |                |       |  |
| CO4            | 4 Understand the Importance and Applications of Internet Protocols |                                    |            |        |       |      |        |                 |                |       |  |
| CO5            | Explore the basic knowledge of cryptography and network security.  |                                    |            |        |       |      |        |                 |                |       |  |

## Detailed Syllabus Section-A

**UNIT–I:** Fundamentals of Communication: Fundamentals of Communication, Modulation, Data Encoding, OSI reference model, TCP/IP model, network standardization, Inter-networking. Physical layer, Switching Technique, Transmission media, Co-axial, Twisted Pair and Fiber Optic Cables, Transmission Impairments, Electromagnetic Spectrum, Radio waves, Microwaves, Satellites, Wireless Mobile Telecommunications Technology.

## (10Hrs)

**UNIT-2**: Data Transmission and Media access Methods: Data Link layer, Design issues, Frame, Error detection and correction, Flow Control, Elementary Data link protocols, Character-oriented and Bit-oriented Protocols, Sliding window protocols, Channel allocation methods, TDM, FDM, ALOHA, Carrier sense Multiple access protocols, Collision free protocols, IEEE standard 802 for LANS, Ethernet, Token Bus, Token ring.

## (10Hrs)

**UNIT–3:** Network Establishment Concepts: Network Layer, Store and Forward Packet Switching, Connectionless and Connection-oriented services, Virtual Circuit, Routing Algorithms, Shortest path, Flooding, Link State, Distant vector, Hierarchical, Broadcast and Multicast Routing. OSPF, BGP, Congestion, Congestion control algorithms.

## (10Hrs)

## Section-B

**UNIT-4:** Internet Protocols : TCP/TP Protocol, IP Addresses, Classes of IP Addresses, Subnets, IPv6, Network layer in the Internet, Internet Control, Protocols, ARP, RARP, BOOTP, DHCP, Transport Layer, Protocol Stack, TCP and UDP, Transport Services Primitives, Sockets, Socket Programming concept.

## (10Hrs)

**UNIT–5**: Network Application and Network Security : Application layer, Name service (DNS), Domain Hierarchy, Name servers, Name resolutions, Traditional applications, Telnet, FTP, SMTP, MIME, World wide web-HTTP, HTTP Methods, Cryptographic Algorithms, DES, AES, RSA, Key exchange methods, Authentication Protocol, Digital Signatures.

(10Hrs)

| S. No. | Name of the Books           | Author         | Publisher       | Edition (Pub. Yr.) |
|--------|-----------------------------|----------------|-----------------|--------------------|
| 1      | Computer Networks: A System | W. Stallings   | Pearson         | 2nd (2010)         |
|        | Approach                    |                | Education       |                    |
| 2      | Computer Networks: A System | L. L. Peterson | Morgan Kauffman | 5th (2011)         |
|        | Approach                    |                |                 |                    |

Textbooks

## **Reference Books**

| S. No. | Name of the Books                                                      | Author        | Publisher         | Edition (Pub. Yr.) |
|--------|------------------------------------------------------------------------|---------------|-------------------|--------------------|
| 1      | Computer Networking: A Top-<br>Down Approach Featuring the<br>Internet | Kurose & Ross | Pearson Education | 3rd (2005)         |

| Course  | Course Norse                    | Course |    |   | Ŧ |   |          | Marks      |       |
|---------|---------------------------------|--------|----|---|---|---|----------|------------|-------|
| Code    | Course Name                     | Туре   | Ca |   |   | Р | Internal | Final Exam | Total |
| MCA-204 | Design & Analysis of Algorithms | PCC    | 4  | 4 | 0 | 0 | 40       | 60         | 100   |

| At the | At the end of the course the student will be able to                                                         |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1    | Understand written algorithms in terms of their composite steps and transformations                          |  |  |  |  |  |
| CO2    | Understand the design and analysis of various algorithms.                                                    |  |  |  |  |  |
| CO3    | Apply important algorithmic design paradigms.                                                                |  |  |  |  |  |
| CO4    | Analyze and compare the algorithms on the basis of asymptotic complexity.                                    |  |  |  |  |  |
| CO5    | Gain understanding of applicability of algorithms in devising optimal solutions to given problems in diverse |  |  |  |  |  |
|        | domains.                                                                                                     |  |  |  |  |  |

## Detailed Syllabus Section-A

**UNIT-I:** Review of Algorithms and Data Structures: Introduction to algorithm analysis: Introduction to algorithms, Algorithm Specifications, performance analysis. Recursion and Induction: recursive procedures, recurrence relations, induction proofs, proving correctness. Randomized Algorithms: Basic of Probability Theory, Description of Randomized algorithms, Identifying the repeated Elements, Partiality Testing, Advantages and Disadvantages of using randomized algorithms.

## (10Hrs) UNIT-2: Basics of Analysis: Asymptotic Bounds, Concept of Efficiency of an Algorithm, Well Known Asymptotic Functions & Notations, Well Known Sorting Algorithms, Comparison of Sorting Algorithms, Best-Case and Worst-Case Analyses, Average-Case Analysis, Amortized Analysis

## (10Hrs)

(10Hrs)

**UNIT–3**: Design Techniques-I:Divide-and-Conquer, General Method, Multiplication of two n-bit numbers, Binary Search, Merge Sort, Quick Sort, Stassen's Matrix multiplication, Exponentiation, Dynamic Programming, General Method, The Problem of Making Change, The Principle of Optimality, Chained Matrix Multiplication.

## Section **B**

**UNIT-4**: Design Techniques-II : Backtracking, General method, n-queen's problem, Sum of subsets problem, Greedy Algorithms, General Method, Knapsack problem, Job sequencing with deadlines, Minimum Spanning Trees, Kruskal's Algorithm, Prim's Algorithm, Dijkstra's Single Source Shortest Path Algorithm

(10Hrs)

(10Hrs)

**UNIT-5:** Classification of Problems & Graphs Algorithms: Non-Deterministic Algorithms, Complexity classes, Introduction to NP-Completeness, Establishing NP-Completeness of Problems, NP-Completeness Proofs, NP-Hard Problems, Graphs Algorithms: Traversing Trees, Depth-First Search, Breadth-First Search, Best-First Search & Topological Sort.

| S. No. | Name of the Books               | Author                            | Publisher          | Edition (Pub. Yr.) |
|--------|---------------------------------|-----------------------------------|--------------------|--------------------|
| 1      | Introduction to Algorithms      | T.Cormen, C. Lieserson, R.Rivest, | Prentice-          | 3rd (2009)         |
|        |                                 | C.Stein                           | Hall/India         |                    |
| 2      | Algorithms                      | S. Dasgupta, C. Papadimitriou,    | McGraw Hill        | 1st (2017)         |
|        |                                 | Umesh Vazirani                    | Education          |                    |
|        |                                 | Reference Books                   |                    |                    |
| S. No. | Name of the Books               | Author                            | Publisher          | Edition (Pub. Yr.) |
| 1      | Fundamentals of Computer        | Ellis Horowitz, Sartaj Sahni      | Universities Press | 2nd (2008)         |
|        | Algorithms                      |                                   |                    |                    |
| 2      | Algorithms Design: Foundations, | Michael T. Goodrich, Roberto      | Wiley              | 1st (2006)         |
|        | Analysis and Internet Examples  | Tamassia                          |                    |                    |

## Textbooks

| Course<br>Code | Course Name             | Course |    |   | Ŧ | ТР | Marks    |            |       |
|----------------|-------------------------|--------|----|---|---|----|----------|------------|-------|
|                |                         | Туре   | Ca |   | 1 |    | Internal | Final Exam | Total |
| MCA-205        | Artificial Intelligence | PCC    | 4  | 4 | 0 | 0  | 40       | 60         | 100   |

| At the | end of the course the student will be able to                                                             |
|--------|-----------------------------------------------------------------------------------------------------------|
| CO1    | Assimilate the fundamental concepts in Artificial Intelligence                                            |
| CO2    | Analyze a real-world problem for implementation and understand the dynamic behavior of a system.          |
| CO3    | Apply techniques in applications which involve perception, reasoning and learning.                        |
| CO4    | Develop a practical skills in designing and implementing multi-agent systems and genetic algorithms       |
| CO5    | Use different machine learning techniques to design AI machine and enveloping applications for real world |
|        | Problems.                                                                                                 |

## Detailed Syllabus Section-A

**UNIT-I:** Introduction: Introduction to AI: History of AI, Basic Elements of AI, Introduction to Turing Machine, Turing Test and Rational Agent, Approaches; State Space Representation of Problems, Game Playing, Min-Max Search, Alpha Beta Cutoff Procedures, Introduction to Expert system, Expert System Life Cycle, Study of existing expert systems like MYCIN and DENDRAL.

## (10Hrs)

**UNIT-2**: Searching Techniques: Heuristic Search techniques-Hill Climbing, Best first search: OR graph, A\* algorithm, Problem Reduction: AND-OR graph, The AO\* Algorithm. Constraint satisfaction: Introduction and algorithm.

## (10Hrs)

**UNIT-3**: Knowledge Representation: Knowledge Representation Structures: Prepositional Logic, First Order Predicate Logic, CNF, DNF, Prenex Normal Form, Resolution, Unification, Inference Mechanisms Semantic Nets, Frames, Scripts, conceptual dependences, Procedural & Declarative knowledge, Reasoning, Uncertainty.

## (10Hrs)

## Section-B

**UNIT-4:** Multi Agent Systems and Genetic Algorithms: Multi Agent Systems: Agents and Objects; Agents and Expert Systems; Generic Structure of Multiagent System, Semantic Web, Agent Communication, Knowledge Sharing using Ontologies, Agent Development Tools, Genetic Algorithms (GA): Encoding Strategies, Genetic Operators, Fitness Functions and GA Cycle; Problem Solving using GA.

## (10Hrs)

**UNIT–5:** Understanding Natural Languages: Understanding Natural Languages: Parsing techniques, context free and transformational grammars, transition nets, augmented transition nets, Fillmore's grammar; grammar-free analyzers, sentence generation.

## (10Hrs)

| S. No. | Name of the Books                 | Author                   | Publisher           | Edition (Pub. Yr.)     |  |  |  |  |
|--------|-----------------------------------|--------------------------|---------------------|------------------------|--|--|--|--|
| 1      | Artificial Intelligence: A Modern | S. Russell and P. Norvig | Pearson Education,  | 2 <sup>nd</sup> (2012) |  |  |  |  |
|        | Approach                          |                          |                     |                        |  |  |  |  |
| 2      | Introduction to Artificial        | Dan W. Patterson         | Prentice Hall India | 1 <sup>st</sup> (2015) |  |  |  |  |
|        | Intelligence and Expert Systems   |                          |                     |                        |  |  |  |  |
|        | Reference Books                   |                          |                     |                        |  |  |  |  |
| S. No. | Name of the Books                 | Author                   | Publisher           | Edition (Pub. Yr.)     |  |  |  |  |
| 1      | Our final invention: Artificial   | Barrat, James            | Macmillan,          | 2 <sup>nd</sup> (2013) |  |  |  |  |
|        | intelligence and the end of the   |                          |                     |                        |  |  |  |  |

## Textbooks

human era

| Course  |                             | Course |    |   |   |   | Marks     |            |       |
|---------|-----------------------------|--------|----|---|---|---|-----------|------------|-------|
| Code    | Course Name                 | Туре   | Cd | L | т | Ρ | Sessional | Final Exam | Total |
| MCA-211 | Data Structures using C Lab | PCC    | 3  | 0 | 0 | 6 | -         | 75         | 75    |

| At the e | At the end of the course the student will be able to:-                               |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1      | Implement lists, stacks, queues, and trees using arrays in C.                        |  |  |  |  |  |
| CO2      | Create the different types of linked lists and perform its operations using C.       |  |  |  |  |  |
| CO3      | Create data structure and perform its operations using C.                            |  |  |  |  |  |
| CO4      | Identify the data structure to develop programs for real world applications.         |  |  |  |  |  |
| CO5      | Assess the applicability of given data structure for a particular use-case scenario. |  |  |  |  |  |

## List of Activities for Data Structures Using CLab

| S. No. | Activities                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Implement a List using Array and develop functions to perform insertion, deletion and linear search operations.                            |
| 2      | Implement a Stack using Array and develop functions to perform push and pop operations.                                                    |
| 3      | Write a program to check if a given expression is correctly parenthesized using Stacks.                                                    |
| 4      | Write a program to evaluate postfix, prefix and infix expressions using Stacks.                                                            |
| 5      | Write a program to convert an infix expression to its corresponding postfix and prefix expressions and vice-<br>versa.                     |
| 6      | Implement a Queue using Array and develop functions to perform enqueue and dequeue operations.                                             |
| 7      | Implement a Singly Linked List and develop functions to perform insertion, deletion and linear search operations.                          |
| 8      | Implement a Doubly Linked List and develop functions to perform insertion, deletion and linear search operations.                          |
| 9      | Implement a Circular Linked List and develop functions to perform insertion, deletion and linear search operations.                        |
| 10     | Implement a Stack using Linked List and develop functions to perform push and pop operations.                                              |
| 11     | Implement a Queue using Linked List and develop functions to perform enqueue and dequeue operations.                                       |
| 12     | Implement a Priority Queue using Linked List and develop functions to perform enqueue and dequeue operations.                              |
| 13     | Implement a Binary Tree using Array and develop functions to perform traversal, searching, insertion and deletion operations.              |
| 14     | Implement a Binary Search Tree using Array and develop functions to perform traversal, searching, insertion and deletion operations.       |
| 15     | Implement a Binary Tree using Linked List and develop functions to perform traversal, searching, insertion and deletion operations.        |
| 16     | Implement a Binary Search Tree using Linked List and develop functions to perform traversal, searching, insertion and deletion operations. |

| Course  |                      | Course |    |   |   |   |           | Marks      |       |
|---------|----------------------|--------|----|---|---|---|-----------|------------|-------|
| Code    | Course Name          | Туре   | Cd | L | т | Ρ | Sessional | Final Exam | Total |
| MCA-212 | Java Programming Lab | PCC    | 3  | 0 | 0 | 6 | -         | 75         | 75    |

| At the end of the course the student will be able to:- |                                                                                   |  |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| CO1                                                    | Use an integrated development environment to write object-oriented Java programs. |  |  |  |  |
| CO2                                                    | Implement the control statements in Java                                          |  |  |  |  |
| CO3                                                    | Apply object-oriented programming principles to design Java applications          |  |  |  |  |
| CO4                                                    | Effectively handle file I/O operations in Java.                                   |  |  |  |  |
| CO5                                                    | Develop Java applets to create GUI                                                |  |  |  |  |

## List of Activities for Java Lab

| S. No. | Activities                                                         |
|--------|--------------------------------------------------------------------|
| 1      | Write a program to check whether the no id evn or odd ,            |
| 2      | Write a program to calculate factorial of a no using while loop    |
| 3      | Write a program to generate a series from 1 to 10 using for loop   |
| 4      | Write a program to generate a table of a no                        |
| 5      | Write a program to check whether the no is Armstrong or not.       |
| 6      | Write a program to generate fibonacii series                       |
| 7      | Write a program to calculate base to power of a no                 |
| 8      | Write a program to implement constructors in Java                  |
| 9      | Write a program to implement classes and objects in Java           |
| 10     | Write a program to implement inbuilt mathematical functions        |
| 11     | Write a program to check whether the string is palindrome or not   |
| 12     | Write a program to implement inbuilt string functions              |
| 13     | Write a program to implement inheritance in Java                   |
| 14     | Write a program to implement packages in Java                      |
| 15     | Write a program to implement multi threading in Java               |
| 16     | Write a program to implement priority based threads                |
| 17     | Write a program to read a file                                     |
| 18     | Write a program to write a file                                    |
| 19     | Write a program to copy the contents of one file into another file |
| 20     | Write a program to implement inter faces                           |
| 21     | Write a program to implement applets in Java                       |

| 22 | Write a program to pass parameters to an applet            |
|----|------------------------------------------------------------|
| 23 | Write a program to calculate factorial of a using applets  |
| 24 | Write a program to implements events in Java               |
| 25 | Write a program to implement flow layout and border layout |
| 26 | Write a program to Grid layout and Card Layout.            |

| Course<br>Code |             | Course | Cd L T P Marks |   |   |   |          |            |
|----------------|-------------|--------|----------------|---|---|---|----------|------------|
|                | Course Name | Туре   | Cd             | L | I | Р | Internal | Final Exam |

| NCC-201 | Placement Overview and | NCC | 0 | 0 | 0 | 2 | Satisfactory / Not | S/NS** |
|---------|------------------------|-----|---|---|---|---|--------------------|--------|
|         | Career Planning        |     |   |   |   |   | Satisfactory       |        |

| At the end of the course the student will be able to |                                                                                |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
| CO1                                                  | Demonstrate proficiency in quantitative problem solving.                       |  |  |  |  |
| CO2                                                  | Reason logically and perform deductions on the given problem statement.        |  |  |  |  |
| CO3                                                  | Comprehend and assimilate a variety of technical and non-technical literature. |  |  |  |  |
| CO4                                                  | Communicate effectively for a wide variety of purposes and audiences.          |  |  |  |  |
| CO5                                                  | Solve problems effectively in competitive exams.                               |  |  |  |  |

## List of Activities for Placement overview and Career Planning

| S.No | Activity Title                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------|
| 1    | Practice Quantitative Aptitude: Vedic Mathematics concepts, Simplification, Quadratic Equations, Surds and       |
|      | Indices, Average and Weighted average, Mixtures and Allegations.                                                 |
|      | Percentages, Profit and Loss, Simple and Compound Interest, Ratio and Proportion, Partnership, Age               |
|      | Problems, Word Problems.                                                                                         |
|      | Time and Work; Time, speed and Distance; Menstruation- Cylinder, Cone, Sphere; Number Systems;                   |
|      | Sequence and Series; Permutation and Combination; Probability; Logarithms; Functions; Data                       |
|      | Interpretation.                                                                                                  |
|      | Data Arrangement, Clocks and Calendars, Different patterns of Puzzles – Quantitative Based, Data                 |
|      | Sufficiency, order and Ranking, Direction sense.                                                                 |
| 2    | Practice Logical Reasoning questions on following topics: Venn Diagram, Syllogisms / Deductions, Abstract        |
|      | Reasoning, Logical Connectives, Input Output, Attention to detail, Selection Decision table, Logical Sequence    |
|      | Words, Coding Decoding, Coded Inequalities, Number Series, Alpha Series, Analogy,                                |
|      | Crypt arithmetic, Blood Relations.                                                                               |
| 3    | Verbal Ability: General Grammar Rules and Grammar Essentials: Nouns, Verbs and Pronouns; Subject-Verb            |
|      | Agreement; Pronoun-Antecedent Agreement; Punctuations.                                                           |
|      | Concept Building for: Reading Comprehension, Passage Analysis, Vocabulary building, Confusing words,             |
|      | Sentence Completion, Verbal Analogy, Spotting errors in sentences.                                               |
|      | Jumbled Sentences, Sentence Improvisation, Writing Skills - Essay Writing, Writing Skills - Email Writing,       |
|      | Critical Reasoning, Reading Comprehension Advanced + Para Jumbles, Gap - Bridging.                               |
| 4    | Learn various effective communication skills: Word Power enhancement; Attention to Detail: spacing,              |
|      | punctuation, spelling, and other finer aspects; Verbal and non-verbal communication skills; Written English      |
|      | with emphasis on writing grammatically correct technical / official letters, applications and reports; Getting   |
|      | rid of inhibitions and building confidence; Assertive and Submissive communication; Using Language for           |
|      | Convincing and Persuasion; Art of asking Questions.                                                              |
| 5    | To participate in a national level aptitude test to assess the learners ability on quantitative, verbal, logical |
|      | Reasoning, soft skills and technical skills.                                                                     |
| 6    | To prepare for group discussion and personal interviews and understanding your personality type.                 |
| 7    | Explore job roles and responsibilities of different job postings and prepare your resume accordingly.            |
| 8    | Explore higher education opportunities in India and abroad and shortlist the possible universities.              |